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Introduction

• Many physical phenomena 
can be simulated with a 
particle system where each 
particle interacts with all 
other particles  according 
to the laws of physics.

• Examples range from 
astrophysical simulations of 
celestial motions to 
electrostatic interactions 
of molecules.



N-Body Problem

• Generally, the N-body problem is the problem of 
predicting the motion of a group of N objects that 
each independently interact with one another over a 
long range (usu. gravitationally or electrostatically). 

• Formally, for a group of N objects in space, if the 
initial positions (x0) and velocities (v0) are known at 
time t0, predict the positions (x) and velocities (v) of 
the N objects at a later time t.

• Prima facie, the solution to this problem is in O(N2) 
because each of the N objects interacts with N-1 
other objects.

• Solving this problem was originally motivated by the 
need to understand the motion of the Sun, planets 
and the visible stars, but it has been applied to 
galaxies, planets, fluids, and molecules (breaks down 
for subatomic particles).

• Its first complete mathematical formulation 
appeared in Isaac Newton's Principia.

http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Isaac_Newton
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Gravitational N-Body Problem

• Finding positions and movements of bodies 
in space subject to gravitational forces from 
other bodies using Newtonian laws of 
motion.

• Gravitational force F between two bodies 
of masses ma and mb is:

• G is the gravitational constant (6.673 × 
10-11 m3 kg-1 s-2) and r the distance 
between the bodies.

• For a system of N particles, the sum of the 
forces is:
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Simple N-Body Scenario with N=4

• Thanks to Newton’s Third 
Law (“for every action, 
there is an equal and 
opposite reaction”), the 
number of interactions is 
halved.

• However, this is still a 
complicated problem that 
only grows in complexity 
with N.
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Gravitational N-Body Problem

• Subject to forces, a body accelerates 
according to Newton’s second law: F = ma 
where m is mass of the body, F is force it 
experiences and a is the acceleration.

• Let the time interval be Δt. Let vt be the 
velocity at time t. For a body of mass m the 
force is:

F = m
vt+1 − vt

Δt



Gravitational N-Body Problem

• New velocity then is

• Over time interval Δt position changes by

• where xt is its position at time t.

• Once bodies move to new positions, forces change and 
computation has to be repeated.

xt+1 = xt + v ⋅ Δt

vt+1 = vt +
F ⋅ Δt
m



N-Body Simulation

• Overall gravitational N-body computation 
can be described as:

for (t = 0; t < tmax; t++) {  /*  time periods */
   for (i = 0; i < N; i++) {  /* for each body */
      F = Force_routine(i);         /* force on body i from n-1 

                     other bodies (O(n)) */
      v_new[i] = v[i] + F * dt / m; /* new velocity */
      x_new[i] = x[i] + v_new[i] * dt; /* new position */
   }
   for (i = 0; i < N; i++) {  /* for each body */
      x[i] = x_new[i];   /* update velocity */
      v[i] = v_new[i];   /* and position */
   }
}
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Cell	
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Parallel Algorithm

• The sequential algorithm is an O(N²) algorithm (for one iteration) as each of the 
N bodies is influenced by each of the other N – 1  bodies.  Each of the forces on 
each interacting pairs are independent calculations.

• The all-pairs calculation is not feasible for most interesting N-body problems 
where N is very large.

• Time complexity can be reduced using observation that a cluster of bodies can 
be approximated as a single body of the total mass of the cluster sited at the 
center of mass of the cluster (coarse-graining).

• Only bodies from nearby cells need to be treated individually, and particles in 
distant cells can be treated as a single large particle centered at its center of 
mass.



Barnes-Hut Algorithm

• Creates an octtree (or quadtree as shown on 
right) – a tree with up to eight (four) edges 
from each node.

• The leaves represent cells each containing 
one body.

• After the tree has been constructed, the 
total mass and center of mass of the 
subcube (subsquare) is stored at each 
node.

• Force on each body obtained by 
traversing tree starting at root, stopping at 
a node when the clustering approximation 
can be used, e.g. when r ≤ d/θ where θ is 
a constant typically 1.0 or less.

• Recursive division of 3D space (or 2D).

• Constructing tree requires a time of O(n log 
n), and so does computing all the forces, so 
that the overall time complexity of the 
method is O(n log n).



Barnes-Hut Algorithm

• Start with whole space in which one 
cube (square) contains the bodies.

• First this cube (square) is divided 
into eight subcubes (four squares).

• If a subcube (subsquare) contains 
no bodies, the subcube 
(subsquare) is deleted from 
further consideration.

• If a subcube (subsquare) contains 
one body, subcube (subsquare) is 
retained.

• If a subcube (subsquare) contains 
more than one body, it is 
recursively divided until every 
subcube (subsquare) contains one 
body.


