
N-Body Problem

Copyright © 2011 Samuel S. Cho

CSC 391/691: GPU Programming Fall 2011

Introduction

• Many physical phenomena
can be simulated with a
particle system where each
particle interacts with all
other particles according
to the laws of physics.

• Examples range from
astrophysical simulations of
celestial motions to
electrostatic interactions
of molecules.

N-Body Problem

• Generally, the N-body problem is the problem of
predicting the motion of a group of N objects that
each independently interact with one another over a
long range (usu. gravitationally or electrostatically).

• Formally, for a group of N objects in space, if the
initial positions (x0) and velocities (v0) are known at
time t0, predict the positions (x) and velocities (v) of
the N objects at a later time t.

• Prima facie, the solution to this problem is in O(N2)
because each of the N objects interacts with N-1
other objects.

• Solving this problem was originally motivated by the
need to understand the motion of the Sun, planets
and the visible stars, but it has been applied to
galaxies, planets, fluids, and molecules (breaks down
for subatomic particles).

• Its first complete mathematical formulation
appeared in Isaac Newton's Principia.

http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Isaac_Newton

Intermission

Gravitational N-Body Problem

• Finding positions and movements of bodies
in space subject to gravitational forces from
other bodies using Newtonian laws of
motion.

• Gravitational force F between two bodies
of masses ma and mb is:

• G is the gravitational constant (6.673 ×
10-11 m3 kg-1 s-2) and r the distance
between the bodies.

• For a system of N particles, the sum of the
forces is:

Fab =
Gmamb

r2

ma

mb

r

r = (xb − xa)
2 + (yb − ya)

2 + (zb − za)
2

F = Fij
i< j
∑ =

Gmimj

rij
2

i< j
∑

Simple N-Body Scenario with N=4

• Thanks to Newton’s Third
Law (“for every action,
there is an equal and
opposite reaction”), the
number of interactions is
halved.

• However, this is still a
complicated problem that
only grows in complexity
with N.

a

c

b

d

Gravitational N-Body Problem

• Subject to forces, a body accelerates
according to Newton’s second law: F = ma
where m is mass of the body, F is force it
experiences and a is the acceleration.

• Let the time interval be Δt. Let vt be the
velocity at time t. For a body of mass m the
force is:

F = m
vt+1 − vt

Δt

Gravitational N-Body Problem

• New velocity then is

• Over time interval Δt position changes by

• where xt is its position at time t.

• Once bodies move to new positions, forces change and
computation has to be repeated.

xt+1 = xt + v ⋅ Δt

vt+1 = vt +
F ⋅ Δt
m

N-Body Simulation

• Overall gravitational N-body computation
can be described as:

for (t = 0; t < tmax; t++) { /* time periods */
 for (i = 0; i < N; i++) { /* for each body */
 F = Force_routine(i); /* force on body i from n-1

 other bodies (O(n)) */
 v_new[i] = v[i] + F * dt / m; /* new velocity */
 x_new[i] = x[i] + v_new[i] * dt; /* new position */
 }
 for (i = 0; i < N; i++) { /* for each body */
 x[i] = x_new[i]; /* update velocity */
 v[i] = v_new[i]; /* and position */
 }
}

Verlet	
 Neighbor	
 List
• Make	
 “neighbor	
 list”	
 of	
 bead	
 pairs	
 with	
 rij	
 <	
 	

rl.	
 	

• Only	
 compute	
 forces	
 for	
 bead	
 pairs	
 from	

neighbor	
 list	
 with	
 rij	
 <	
 rc.

• Update	
 neighbor	
 list	
 every	
 N	
 Bmesteps.	

• rc	
 and	
 rl	
 chosen	
 as	
 2.5	
 σ	
 and	
 3.2	
 σ,	

respecBvely.

• Speedup	
 from	
 calculaBng	
 forces	
 for	
 only	

neighbor	
 list	
 bead	
 pairs	
 with	
 rij	
 <	
 rc.

Cutoff	
 radius	

(rc)

rc

rl

“skin”	
 layer	

radius	

(rl)

boxLen

(Verlet,	
 1967;	
 Allen	
 and	
 Tildesley,	
 1987)

Periodic	
 Boundary	
 CondiBons
• All	
 interacBons	
 wrap	
 around	

central	
 “image”	
 that	
 is	

repeated	
 in	
 all	
 direcBons.

• “infinite”	
 simulaBon	
 space

• Cutoffs	
 also	
 wrap	

– rc	
 must	
 be	
 less	
 than	
 boxLen

PBC	
 on	
 2D	
 box

Minimal	
 Image

boxLen

PBC	
 search	
 range	
 in	

minimal	
 image

boxLen

Cutoff	
 radius	

(rc)

rc

(Allen	
 and	
 Tildesley,	
 1987)

Cell	
 List

• Split	
 simulaBon	
 box	
 into	
 nCell	
 idenBcal	

cells,	
 each	
 with	
 length	
 cellLen.

• Make	
 “cell	
 list”	
 of	
 bead	
 pairs	
 within	
 center	

+	
 neighboring	
 cells

• Neighboring	
 cells	
 wrap	
 (PBC)

• Only	
 compute	
 forces	
 for	
 bead	
 pairs	
 from	

neighbor	
 list	
 with	
 rij	
 <	
 rc.	

• Update	
 neighbor	
 list	
 every	
 N	
 Bmesteps.	

• rc	
 chosen	
 as	
 2.5	
 σ,	
 cellLen	
 as	
 ½	
 rc.

• Speedup	
 from	
 calculaBng	
 forces	
 for	
 only	

cell	
 list	
 bead	
 pairs	
 with	
 rij	
 <	
 rc.

Cutoff	
 radius	

(rc)

Fixed	
 grid

cellLen

boxLen
rc

Parallel Algorithm

• The sequential algorithm is an O(N²) algorithm (for one iteration) as each of the
N bodies is influenced by each of the other N – 1 bodies. Each of the forces on
each interacting pairs are independent calculations.

• The all-pairs calculation is not feasible for most interesting N-body problems
where N is very large.

• Time complexity can be reduced using observation that a cluster of bodies can
be approximated as a single body of the total mass of the cluster sited at the
center of mass of the cluster (coarse-graining).

• Only bodies from nearby cells need to be treated individually, and particles in
distant cells can be treated as a single large particle centered at its center of
mass.

Barnes-Hut Algorithm

• Creates an octtree (or quadtree as shown on
right) – a tree with up to eight (four) edges
from each node.

• The leaves represent cells each containing
one body.

• After the tree has been constructed, the
total mass and center of mass of the
subcube (subsquare) is stored at each
node.

• Force on each body obtained by
traversing tree starting at root, stopping at
a node when the clustering approximation
can be used, e.g. when r ≤ d/θ where θ is
a constant typically 1.0 or less.

• Recursive division of 3D space (or 2D).

• Constructing tree requires a time of O(n log
n), and so does computing all the forces, so
that the overall time complexity of the
method is O(n log n).

Barnes-Hut Algorithm

• Start with whole space in which one
cube (square) contains the bodies.

• First this cube (square) is divided
into eight subcubes (four squares).

• If a subcube (subsquare) contains
no bodies, the subcube
(subsquare) is deleted from
further consideration.

• If a subcube (subsquare) contains
one body, subcube (subsquare) is
retained.

• If a subcube (subsquare) contains
more than one body, it is
recursively divided until every
subcube (subsquare) contains one
body.

